Answers for "groupby python dataframe"

20

group by pandas examples

>>> n_by_state = df.groupby("state")["state"].count()
>>> n_by_state.head(10)
state
AK     16
AL    206
AR    117
AS      2
AZ     48
CA    361
CO     90
CT    240
DC      2
DE     97
Name: last_name, dtype: int64
Posted by: Guest on May-21-2020
8

groupby in pandas

>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
...                               'Parrot', 'Parrot'],
...                    'Max Speed': [380., 370., 24., 26.]})
>>> df
   Animal  Max Speed
0  Falcon      380.0
1  Falcon      370.0
2  Parrot       24.0
3  Parrot       26.0
>>> df.groupby(['Animal']).mean()
        Max Speed
Animal
Falcon      375.0
Parrot       25.0
Posted by: Guest on December-14-2020
2

groupby and list

In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
        df

Out[1]: 
   a  b
0  A  1
1  A  2
2  B  5
3  B  5
4  B  4
5  C  6

In [2]: df.groupby('a')['b'].apply(list)
Out[2]: 
a
A       [1, 2]
B    [5, 5, 4]
C          [6]
Name: b, dtype: object

In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
        df1
Out[3]: 
   a        new
0  A     [1, 2]
1  B  [5, 5, 4]
2  C        [6]
Posted by: Guest on February-10-2021
0

Pandas groupby

>>> emp.groupby(['dept', 'gender']).agg({'salary':'mean'}).round(-3)
Posted by: Guest on August-09-2021
-1

groupby

df.groupby(sepal_len_groups)['sepal length (cm)'].agg(count='count')

sum_sep = sep.groupby('Year').agg({'TotalProjects':'sum',
                                   'TotalFunds':'sum',
                                   'TotalFunds':'count',
                                   'SubDistrict':'count'})
                                   
sum_sep.stb.subtotal(grand_label='Total').applymap('{:,.0f}'.format)
Posted by: Guest on September-19-2021
-1

pandas group by column

>> df = pd.read_excel(r"C:path_to_filedataset_test.xlsx")

>> print(df)

'''
  name  number
0   p1      64
1   p2      98
2   p1      93
3   p2      57
4   p1      89
5   p2      83
6   p1      58
7   p2      73
8   p1      64
9   p2      24
'''
>> data = df.groupby("name").number.apply(list)

>> print(data)
'''
name
p1    [64, 93, 89, 58, 64]
p2    [98, 57, 83, 73, 24]
Name: number, dtype: object
'''

>> print(data.p1)
'''
[64, 93, 89, 58, 64]
'''
Posted by: Guest on October-14-2021

Python Answers by Framework

Browse Popular Code Answers by Language