Answers for "batchnorm 3d pytorch"

1

batchnorm1d pytorch

class network(nn.Module):
    def __init__(self):
        super(network, self).__init__()
        self.linear1 = nn.Linear(in_features=40, out_features=320)
        self.bn1 = nn.BatchNorm1d(num_features=320)
        self.linear2 = nn.Linear(in_features=320, out_features=2)

    def forward(self, input):  # Input is a 1D tensor
        y = F.relu(self.bn1(self.linear1(input)))
        y = F.softmax(self.linear2(y), dim=1)
        return y
    
model = network()
x = torch.randn(10, 40)
output = model(x)
Posted by: Guest on May-01-2020
1

dropout2d pytorch

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(F.dropout2d(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x)
        x = F.log_softmax(self.fc2(x))
        return x
Posted by: Guest on April-27-2020

Python Answers by Framework

Browse Popular Code Answers by Language