Answers for "pandas conditional selection"

5

new dataframe based on certain row conditions

filterinfDataframe = dfObj[(dfObj['Sale'] > 30) & (dfObj['Sale'] < 33) ]
Posted by: Guest on April-04-2020
1

slice dataframe pandas based on condition

# To slice pandas dataframe by condition

frioMurteira = data.loc[(data["POM"] == "Murteira") & (data["TMP"] > 7.2), ["DTM","TMP"]]
Posted by: Guest on May-31-2020
3

new dataframe based on certain row conditions

# Create variable with TRUE if nationality is USA
american = df['nationality'] == "USA"

# Create variable with TRUE if age is greater than 50
elderly = df['age'] > 50

# Select all cases where nationality is USA and age is greater than 50
df[american & elderly]
Posted by: Guest on March-02-2020
0

conditional value if else pandas np.select

# create a list of our conditions
conditions = [
    (df['likes_count'] <= 2),
    (df['likes_count'] > 2) & (df['likes_count'] <= 9),
    (df['likes_count'] > 9) & (df['likes_count'] <= 15),
    (df['likes_count'] > 15)
    ]

# create a list of the values we want to assign for each condition
values = ['tier_4', 'tier_3', 'tier_2', 'tier_1']

# create a new column and use np.select to assign values to it using our lists as arguments
df['tier'] = np.select(conditions, values)

# display updated DataFrame
df.head()
Posted by: Guest on October-19-2020
-1

python pandas dataframe conditional subset

In [722]: df[(df['C']==1) | df['B']]
Out[722]:
   A      B  C
0  1   True  1
2  2  False  1
3  2   True  2
4  3   True  1

In [723]: df.query('C==1 or B==True')
Out[723]:
   A      B  C
0  1   True  1
2  2  False  1
3  2   True  2
4  3   True  1

In [724]: df[df.eval('C==1 or B==True')]
Out[724]:
   A      B  C
0  1   True  1
2  2  False  1
3  2   True  2
4  3   True  1
Posted by: Guest on May-26-2020

Python Answers by Framework

Browse Popular Code Answers by Language