vlookup in r dplyr
# Left Join: keep all rows in x even if there's no match in y
merge(life_expectancy, income_disparity, all.x = TRUE)
vlookup in r dplyr
# Left Join: keep all rows in x even if there's no match in y
merge(life_expectancy, income_disparity, all.x = TRUE)
vlookup in r dplyr
# Merge by multiple columns
merge(life_expectancy, income_disparity, by = c("country", "city"))
vlookup in r dplyr
library(dplyr)
desired_result =
df_b %>% select(-price,-sale_price) %>%
left_join(
df_a %>%
transmute(id = SKU, price = PRECIO_LISTA, sale_price = PRECIO_INDEXADO) %>%
distinct()
)
vlookup in r dplyr
# Merge by columns with different names
merge(life_expectancy, sanitation, by.x = "cntr_nm", by.y = "country.name")
vlookup in r dplyr
data_2012 = merge(life_expectancy[, c("country.name", "le_2012")],
sanitation[, c("country.name", "san_2012")])
head(data_2012, 10)
vlookup in r dplyr
life_expectancy = read.csv("life_expectancy.csv", skip = 2, header = TRUE, stringsAsFactors = FALSE)
sanitation = read.csv("sanitation.csv", skip = 2, header = TRUE, stringsAsFactors = FALSE)
## rename all yearly metric columns. E.g., X1995 becomes le_1995 (for life expectancy)
names(life_expectancy)[grepl("\\bX", names(life_expectancy))] = gsub("X", "le_", names(le)[grepl("\\bX", names(life_expectancy))])
names(sanitation)[grepl("\\bX", names(sanitation))] = gsub("X", "san_", names(sanitation)[grepl("\\bX", names(sanitation))])
## lowercase column names
names(life_expectancy) = tolower(names(life_expectancy))
names(sanitation) = tolower(names(sanitation))
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us