Answers for "explain random forest parameters sklearn"

4

sklearn random forest regressor

from sklearn.ensemble import RandomForestRegressor


clf = RandomForestRegressor(max_depth=2, random_state=0)

clf.fit(X, y)

print(clf.predict([[0, 0, 0, 0]]))
Posted by: Guest on November-26-2020
0

sklearn random forest feature importance

import pandas as pd
forest_importances = pd.Series(importances, index=feature_names)

fig, ax = plt.subplots()
forest_importances.plot.bar(yerr=std, ax=ax)
ax.set_title("Feature importances using MDI")
ax.set_ylabel("Mean decrease in impurity")
fig.tight_layout()
Posted by: Guest on May-09-2021
0

sklearn random forest feature importance

print(__doc__)
import matplotlib.pyplot as plt
Posted by: Guest on May-09-2021

Code answers related to "explain random forest parameters sklearn"

Python Answers by Framework

Browse Popular Code Answers by Language