sklearn random forest regressor
from sklearn.ensemble import RandomForestRegressor
clf = RandomForestRegressor(max_depth=2, random_state=0)
clf.fit(X, y)
print(clf.predict([[0, 0, 0, 0]]))
sklearn random forest regressor
from sklearn.ensemble import RandomForestRegressor
clf = RandomForestRegressor(max_depth=2, random_state=0)
clf.fit(X, y)
print(clf.predict([[0, 0, 0, 0]]))
sklearn random forest
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
print(clf.predict([[0, 0, 0, 0]]))
how to use random tree in python
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators=20, random_state=0)
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
how to use random tree in python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
how to use random tree in python
from sklearn import metrics
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
sklearn random forest
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=1000, n_features=4,
n_informative=2, n_redundant=0,
random_state=0, shuffle=False)
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
print(clf.predict([[0, 0, 0, 0]]))
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us