Answers for "random forest classifier using sklearn example"

8

sklearn random forest

from sklearn.ensemble import RandomForestClassifier


clf = RandomForestClassifier(max_depth=2, random_state=0)

clf.fit(X, y)

print(clf.predict([[0, 0, 0, 0]]))
Posted by: Guest on November-26-2020
0

Scikit learn random forest classifier

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=1000, n_features=4,
                           n_informative=2, n_redundant=0,
                           random_state=0, shuffle=False)
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X, y)

print(clf.predict([[0, 0, 0, 0]]))
Posted by: Guest on March-17-2021
1

sklearn random forest

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification


X, y = make_classification(n_samples=1000, n_features=4,
                            n_informative=2, n_redundant=0,
                            random_state=0, shuffle=False)
clf = RandomForestClassifier(max_depth=2, random_state=0)

clf.fit(X, y)

print(clf.predict([[0, 0, 0, 0]]))
Posted by: Guest on November-26-2020

Code answers related to "random forest classifier using sklearn example"

Python Answers by Framework

Browse Popular Code Answers by Language