Answers for "random forest classifier sklearn"

8

sklearn random forest

from sklearn.ensemble import RandomForestClassifier


clf = RandomForestClassifier(max_depth=2, random_state=0)

clf.fit(X, y)

print(clf.predict([[0, 0, 0, 0]]))
Posted by: Guest on November-26-2020
0

random forest classifier in python

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=1000, n_features=4,
                           n_informative=2, n_redundant=0,
                           random_state=0, shuffle=False)
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X, y)

print(clf.predict([[0, 0, 0, 0]]))
Posted by: Guest on March-17-2021
1

sklearn random forest

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification


X, y = make_classification(n_samples=1000, n_features=4,
                            n_informative=2, n_redundant=0,
                            random_state=0, shuffle=False)
clf = RandomForestClassifier(max_depth=2, random_state=0)

clf.fit(X, y)

print(clf.predict([[0, 0, 0, 0]]))
Posted by: Guest on November-26-2020
1

Random forest classifier python

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# Creating a bar plot
sns.barplot(x=feature_imp, y=feature_imp.index)
# Add labels to your graph
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
plt.title("Visualizing Important Features")
plt.legend()
plt.show()
Posted by: Guest on May-09-2021
0

RandomizedSearch for Random Forest Classifier

# create random forest classifier model
rf_model = RandomForestClassifier()

# set up random search meta-estimator
# this will train 100 models over 5 folds of cross validation (500 models total)
clf = RandomizedSearchCV(rf_model, model_params, n_iter=100, cv=5, random_state=1)

# train the random search meta-estimator to find the best model out of 100 candidates
model = clf.fit(X, y)

# print winning set of hyperparameters
from pprint import pprint
pprint(model.best_estimator_.get_params())
Posted by: Guest on July-18-2021

Code answers related to "random forest classifier sklearn"

Python Answers by Framework

Browse Popular Code Answers by Language