pandas select row by index
#for single row
df.loc[ index , : ]
# for multiple rows
indices = [1, 20, 33, 47, 52 ]
new_df= df.iloc[indices, :]
pandas select row by index
#for single row
df.loc[ index , : ]
# for multiple rows
indices = [1, 20, 33, 47, 52 ]
new_df= df.iloc[indices, :]
retrieve row by index pandas
rowData = dfObj.loc[ 'b' , : ]
pandas select rows by index level
### w3sources ###
d = {'num_legs': [4, 4, 4, 2, 2],
'num_wings': [0, 0, 0, 2, 2],
'class': ['mammal', 'mammal', 'mammal', 'bird', 'bird'],
'animal': ['tiger', 'lion', 'fox', 'eagle', 'penguin'],
'locomotion': ['walks', 'walks', 'walks', 'flies', 'walks']}
df = pd.DataFrame(data=d)
df = df.set_index(['class', 'animal', 'locomotion'])
# num_legs num_wings
# class animal locomotion
# mammal| tiger walks 4 0
# | lion walks 4 0
# | fox walks 4 0
# __________________________________________
# bird | eagle flies 2 2
# | penguin walks 2 2
df.xs('mammal')
df.xs(('mammal', 'fox'))
df.xs('lion', level=1)
df.xs(('bird', 'walks'),level=[0, 'locomotion'])
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us