pandas select column by index
# A B C
# 0 1 3 5
# 1 2 4 6
column_B = a_dataframe.iloc[:, 1]
print(column_B)
# OUTPUT
# 0 3
# 1 4
pandas select column by index
# A B C
# 0 1 3 5
# 1 2 4 6
column_B = a_dataframe.iloc[:, 1]
print(column_B)
# OUTPUT
# 0 3
# 1 4
isolate row based on index pandas
dfObj.iloc[: , [0, 2]]
pandas select rows by index level
### w3sources ###
d = {'num_legs': [4, 4, 4, 2, 2],
'num_wings': [0, 0, 0, 2, 2],
'class': ['mammal', 'mammal', 'mammal', 'bird', 'bird'],
'animal': ['tiger', 'lion', 'fox', 'eagle', 'penguin'],
'locomotion': ['walks', 'walks', 'walks', 'flies', 'walks']}
df = pd.DataFrame(data=d)
df = df.set_index(['class', 'animal', 'locomotion'])
# num_legs num_wings
# class animal locomotion
# mammal| tiger walks 4 0
# | lion walks 4 0
# | fox walks 4 0
# __________________________________________
# bird | eagle flies 2 2
# | penguin walks 2 2
df.xs('mammal')
df.xs(('mammal', 'fox'))
df.xs('lion', level=1)
df.xs(('bird', 'walks'),level=[0, 'locomotion'])
add an index column in range dataframe
df = df.loc[df.index.repeat(df['a'])]
df['c'] = df.groupby(level=0).cumcount() + 1
df = df.reset_index(drop=True)
print (df)
a b c
0 1 x 1
1 2 y 1
2 2 y 2
3 3 z 1
4 3 z 2
5 3 z 3
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us