how to use random tree in python
from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators=20, random_state=0) regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test)
how to use random tree in python
from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators=20, random_state=0) regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test)
random forest python
from sklearn.ensemble import RandomForestClassifier y = train_data["Survived"] features = ["Pclass", "Sex", "SibSp", "Parch","Fare","Age"] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1) model.fit(X, y) predictions = model.predict(X_test)
how to use random tree in python
from sklearn import metrics print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
Random forest classifier python
import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline # Creating a bar plot sns.barplot(x=feature_imp, y=feature_imp.index) # Add labels to your graph plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title("Visualizing Important Features") plt.legend() plt.show()
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us