Answers for "np.where multiple conditions multiple results"

2

np.select with multiple conditions

conditions = [
    df['gender'].eq('male') & df['pet1'].eq(df['pet2']),
    df['gender'].eq('female') & df['pet1'].isin(['cat', 'dog'])
]

choices = [5,5]

df['points'] = np.select(conditions, choices, default=0)

print(df)
     gender      pet1      pet2  points
0      male       dog       dog       5
1      male       cat       cat       5
2      male       dog       cat       0
3    female       cat  squirrel       5
4    female       dog       dog       5
5    female  squirrel       cat       0
6  squirrel       dog       cat       0
Posted by: Guest on December-01-2020
1

np.select with multiple conditions

#Using .assign you can make multiple
#operations that depend on the
#previous ones without the need
#of creating intermediate variables
import pandas as pd

df = pd.DataFrame({
    'name': ['alice','bob','charlie','daniel'],
    'age': [25,66,56,78]
})

df.assign(
    is_senior = lambda dataframe: dataframe['age'].map(lambda age: True if age >= 65 else False) 
).assign(
    name_uppercase = lambda dataframe: dataframe['name'].map(lambda name: name.upper()),
).assign(
    name_uppercase_double = lambda dataframe: dataframe['name_uppercase'].map(lambda name: name.upper()+"-"+name.upper())
)
Posted by: Guest on December-01-2020

Code answers related to "np.where multiple conditions multiple results"

Python Answers by Framework

Browse Popular Code Answers by Language