group by pandas examples
>>> n_by_state = df.groupby("state")["state"].count()
>>> n_by_state.head(10)
state
AK     16
AL    206
AR    117
AS      2
AZ     48
CA    361
CO     90
CT    240
DC      2
DE     97
Name: last_name, dtype: int64group by pandas examples
>>> n_by_state = df.groupby("state")["state"].count()
>>> n_by_state.head(10)
state
AK     16
AL    206
AR    117
AS      2
AZ     48
CA    361
CO     90
CT    240
DC      2
DE     97
Name: last_name, dtype: int64groupby and list
In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
        df
Out[1]: 
   a  b
0  A  1
1  A  2
2  B  5
3  B  5
4  B  4
5  C  6
In [2]: df.groupby('a')['b'].apply(list)
Out[2]: 
a
A       [1, 2]
B    [5, 5, 4]
C          [6]
Name: b, dtype: object
In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
        df1
Out[3]: 
   a        new
0  A     [1, 2]
1  B  [5, 5, 4]
2  C        [6]groupby
df['frequency'] = df['county'].map(df['county'].value_counts())
    county  frequency
1   N       5
2   N       5
3   C       1
4   N       5
5   S       1
6   N       5
7   N       5groupby
df.groupby(sepal_len_groups)['sepal length (cm)'].agg(count='count')
sum_sep = sep.groupby('Year').agg({'TotalProjects':'sum',
                                   'TotalFunds':'sum',
                                   'TotalFunds':'count',
                                   'SubDistrict':'count'})
                                   
sum_sep.stb.subtotal(grand_label='Total').applymap('{:,.0f}'.format)Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us
