Answers for "groupby where pandas"

8

groupby in pandas

>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
...                               'Parrot', 'Parrot'],
...                    'Max Speed': [380., 370., 24., 26.]})
>>> df
   Animal  Max Speed
0  Falcon      380.0
1  Falcon      370.0
2  Parrot       24.0
3  Parrot       26.0
>>> df.groupby(['Animal']).mean()
        Max Speed
Animal
Falcon      375.0
Parrot       25.0
Posted by: Guest on December-14-2020
2

Groups the DataFrame using the specified columns

# Groups the DataFrame using the specified columns

df.groupBy().avg().collect()
# [Row(avg(age)=3.5)]
sorted(df.groupBy('name').agg({'age': 'mean'}).collect())
# [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)]
sorted(df.groupBy(df.name).avg().collect())
# [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)]
sorted(df.groupBy(['name', df.age]).count().collect())
# [Row(name='Alice', age=2, count=1), Row(name='Bob', age=5, count=1)]
Posted by: Guest on April-08-2020
0

Pandas groupby

>>> emp.groupby(['dept', 'gender']).agg({'salary':'mean'}).round(-3)
Posted by: Guest on August-09-2021
0

groupby

df['frequency'] = df['county'].map(df['county'].value_counts())

    county  frequency
1   N       5
2   N       5
3   C       1
4   N       5
5   S       1
6   N       5
7   N       5
Posted by: Guest on August-11-2021
-1

pandas group by column

>> df = pd.read_excel(r"C:path_to_filedataset_test.xlsx")

>> print(df)

'''
  name  number
0   p1      64
1   p2      98
2   p1      93
3   p2      57
4   p1      89
5   p2      83
6   p1      58
7   p2      73
8   p1      64
9   p2      24
'''
>> data = df.groupby("name").number.apply(list)

>> print(data)
'''
name
p1    [64, 93, 89, 58, 64]
p2    [98, 57, 83, 73, 24]
Name: number, dtype: object
'''

>> print(data.p1)
'''
[64, 93, 89, 58, 64]
'''
Posted by: Guest on October-14-2021

Python Answers by Framework

Browse Popular Code Answers by Language