Answers for "groupby in sql"

SQL
1

group function in sql

--- GROUP FUNCTION | MULTI ROW FUNCTION | AGGREGATE FUNCTION 
--- COUNT , MAX , MIN , SUM , AVG
Posted by: Guest on January-07-2021
0

group by

class groupby(object):
    # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
    # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
    def __init__(self, iterable, key=None):
        if key is None:
            key = lambda x: x
        self.keyfunc = key
        self.it = iter(iterable)
        self.tgtkey = self.currkey = self.currvalue = object()
    def __iter__(self):
        return self
    def next(self):
        while self.currkey == self.tgtkey:
            self.currvalue = next(self.it)    # Exit on StopIteration
            self.currkey = self.keyfunc(self.currvalue)
        self.tgtkey = self.currkey
        return (self.currkey, self._grouper(self.tgtkey))
    def _grouper(self, tgtkey):
        while self.currkey == tgtkey:
            yield self.currvalue
            self.currvalue = next(self.it)    # Exit on StopIteration
            self.currkey = self.keyfunc(self.currvalue)
Posted by: Guest on June-15-2021
0

group by

SELECT
  <column_name>,
  COUNT(<column_name>) AS `value_occurrence` 

FROM
  <my_table>

GROUP BY 
  <column_name>

ORDER BY 
  `value_occurrence` DESC

LIMIT 1;
Posted by: Guest on November-04-2021
-1

GROUP BY

SELECT <field1, field2, field3…>
FROM <table1_name>
WHERE <condition/expression>
GROUP BY <field1, field2, field3…>
Posted by: Guest on September-24-2020
0

groupby

df['frequency'] = df['county'].map(df['county'].value_counts())

    county  frequency
1   N       5
2   N       5
3   C       1
4   N       5
5   S       1
6   N       5
7   N       5
Posted by: Guest on August-11-2021
-1

groupby

df.groupby(sepal_len_groups)['sepal length (cm)'].agg(count='count')

sum_sep = sep.groupby('Year').agg({'TotalProjects':'sum',
                                   'TotalFunds':'sum',
                                   'TotalFunds':'count',
                                   'SubDistrict':'count'})
                                   
sum_sep.stb.subtotal(grand_label='Total').applymap('{:,.0f}'.format)
Posted by: Guest on September-19-2021

Code answers related to "SQL"

Browse Popular Code Answers by Language