plot keras model
tf.keras.utils.plot_model(model, to_file=dot_img_file.png, show_shapes=True)
plot keras model
tf.keras.utils.plot_model(model, to_file=dot_img_file.png, show_shapes=True)
plotting graphs in keras
# Visualize training history from keras.models import Sequential from keras.layers import Dense import matplotlib.pyplot as plt import numpy # load pima indians dataset dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",") # split into input (X) and output (Y) variables X = dataset[:,0:8] Y = dataset[:,8] # create model model = Sequential() model.add(Dense(12, input_dim=8, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(1, activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model history = model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10, verbose=0) # list all data in history print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
plot neural network keras
from keras.models import Sequential from keras.layers import Dense from keras.utils.vis_utils import plot_model model = Sequential() model.add(Dense(2, input_dim=1, activation='relu')) model.add(Dense(1, activation='sigmoid')) plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us