drop multiple columns pandas
yourdf.drop(['columnheading1', 'columnheading2'], axis=1, inplace=True)
drop multiple columns pandas
yourdf.drop(['columnheading1', 'columnheading2'], axis=1, inplace=True)
drop list of columns pandas
df.drop([item for item in total_cols if item not in columns_in_use], axis=)
remove columns from a dataframe python
df = df.drop(df.columns[[0, 1, 3]], axis=1) # df.columns is zero-based pd.Index
python - dataframe columns is a list - drop
# Df with a coulmn (dims) that contain list
key1 = 'site channel fiscal_week'.split()
key2 = 'site dude fiscal_week'.split()
key3 = 'site eng fiscal_week'.split()
keys = pd.DataFrame({'key': [1,2,3],
'dims': [key1,key2,key3]})
# Output
dims key
[site, channel, fiscal_week] 1
[site, dude, fiscal_week] 2
[site, eng, fiscal_week] 3
# Solution
keys['reduced_dims'] = keys['dims'].apply(
lambda row: [val for val in row if val != 'fiscal_week']
)
drop dataframe columns from list of column names
# Drop The Original Categorical Columns which had Whitespace Issues in their values
df.drop(cat_columns, axis = 1, inplace = True)
dict_1 = {'workclass_stripped':'workclass', 'education_stripped':'education',
'marital-status_stripped':'marital_status', 'occupation_stripped':'occupation',
'relationship_stripped':'relationship', 'race_stripped':'race',
'sex_stripped':'sex', 'native-country_stripped':'native-country',
'Income_stripped':'Income'}
df.rename(columns = dict_1, inplace = True)
df
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us