Answers for "svm classifier sklearn"

9

scikit learn svm

from sklearn import svm
X = [[0, 0], [1, 1]]
y = [0, 1]
clf = svm.SVC()
clf.fit(X, y)
clf.predict([[2., 2.]])
Posted by: Guest on July-29-2020
0

svm classifier sklearn

>>> import numpy as np
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.preprocessing import StandardScaler
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import SVC
>>> clf = make_pipeline(StandardScaler(), SVC(gamma='auto'))
>>> clf.fit(X, y)
Pipeline(steps=[('standardscaler', StandardScaler()),
                ('svc', SVC(gamma='auto'))])
>>>
>>> print(clf.predict([[-0.8, -1]]))
[1]
Posted by: Guest on September-15-2021

Browse Popular Code Answers by Language