decisiontreeclassifier sklearn
from sklearn.tree import DecisionTreeClassifier
decisiontreeclassifier sklearn
from sklearn.tree import DecisionTreeClassifier
skit learn decision
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_text
iris = load_iris()
decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
decision_tree = decision_tree.fit(iris.data, iris.target)
r = export_text(decision_tree, feature_names=iris['feature_names'])
print(r)
decision tree classifier sklearn
from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(random_state=0)
iris = load_iris()
cross_val_score(clf, iris.data, iris.target, cv=10)
scikit decision tree classifier gini criterion
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
# Max depth Decision tree classifier using gini criterion
clf_gini_max = DecisionTreeClassifier(random_state=50, criterion='gini', max_depth=None)
clf_gini_max = clf_gini_max.fit(X_train,Y_train)
Y_pred = clf_gini_max.predict(X_test)
training_accuracy = clf_gini_max.score(X_train,Y_train)
testing_accuracy = clf_gini_max.score(X_test,Y_test)
print(training_accuracy)
print(testing_accuracy)
skcikit learn decision tree
>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)
scikit learn decision tree
from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us