SimpleImputer
imr = Imputer(missing_values='NaN', strategy='median', axis=0)
imr = imr.fit(data[['age']])
data['age'] = imr.transform(data[['age']]).ravel()
SimpleImputer
imr = Imputer(missing_values='NaN', strategy='median', axis=0)
imr = imr.fit(data[['age']])
data['age'] = imr.transform(data[['age']]).ravel()
Multivariate feature imputation
# Multivariate feature imputation
import numpy as np
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
imp = IterativeImputer(max_iter=10, random_state=0)
imp.fit([[1, 2], [3, 6], [4, 8], [np.nan, 3], [7, np.nan]])
# IterativeImputer(random_state=0)
X_test = [[np.nan, 2], [6, np.nan], [np.nan, 6]]
# the model learns that the second feature is double the first
print(np.round(imp.transform(X_test)))
# [[ 1. 2.]
# [ 6. 12.]
# [ 3. 6.]]
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us