Answers for "label binarizer"

0

sklearn labelbinarizer in pipeline

from sklearn.preprocessing import LabelBinarizer

class LabelBinarizerPipelineFriendly(LabelBinarizer):
    def fit(self, X, y=None):
        """this would allow us to fit the model based on the X input."""
        super(LabelBinarizerPipelineFriendly,self).fit(X)
    def transform(self, X, y=None):
        return super(LabelBinarizerPipelineFriendly, self).transform(X)
    def fit_transform(self, X, y=None):
        return super(LabelBinarizerPipelineFriendly, self).fit(X).transform(X)
Posted by: Guest on August-15-2020
0

label binarizer

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer()
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],
       [0, 0, 0, 1]])
Posted by: Guest on September-23-2021
0

sklearn labelbinarizer in pipeline

from sklearn.preprocessing import LabelBinarizer

class LabelBinarizerPipelineFriendly(LabelBinarizer):
    def fit(self, X, y=None):
        """this would allow us to fit the model based on the X input."""
        super(LabelBinarizerPipelineFriendly,self).fit(X)
    def transform(self, X, y=None):
        return super(LabelBinarizerPipelineFriendly, self).transform(X)
    def fit_transform(self, X, y=None):
        return super(LabelBinarizerPipelineFriendly, self).fit(X).transform(X)
Posted by: Guest on August-15-2020
0

label binarizer

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer()
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],
       [0, 0, 0, 1]])
Posted by: Guest on September-23-2021

Python Answers by Framework

Browse Popular Code Answers by Language