Answers for "modular division"

1

modular division

int gcdExtended(int a, int b, int *x, int *y);
 
// Function to find modulo inverse of b. It returns
// -1 when inverse doesn't
int modInverse(int b, int m)
{
    int x, y; // used in extended GCD algorithm
    int g = gcdExtended(b, m, &x, &y);
 
    // Return -1 if b and m are not co-prime
    if (g != 1)
        return -1;
 
    // m is added to handle negative x
    return (x%m + m) % m;
}
 
// Function to compute a/b under modlo m
int modDivide(int a, int b, int m)
{
    a = a % m;
    int inv = modInverse(b, m);
    if (inv == -1)
       return -1;
    else
       return (inv * a) % m;
}
 
// C function for extended Euclidean Algorithm (used to
// find modular inverse.
int gcdExtended(int a, int b, int *x, int *y)
{
    // Base Case
    if (a == 0)
    {
        *x = 0, *y = 1;
        return b;
    }
 
    int x1, y1; // To store results of recursive call
    int gcd = gcdExtended(b%a, a, &x1, &y1);
 
    // Update x and y using results of recursive
    // call
    *x = y1 - (b/a) * x1;
    *y = x1;
 
    return gcd;
}
Posted by: Guest on June-18-2021

Browse Popular Code Answers by Language